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An advantage of the American Community Survey is that its large sample size gives
researchers the ability to categorize groups of individuals based on some secondary
characteristic. For instance, one could classify people as living in ‘high’ or ‘low’ poverty
areas based on the poverty rate of the census tract in which they live. Because this
assignment is based on survey data, it is not without sampling error. When talking
collectively of groups that share the characteristic, the concept is more nebulous than a
simple aggregation and measures of uncertainty should include the error associated with
making the group classification. Often the variance from this classification error can be
many times that of the sampling variance in the final estimate. Using poverty areas as an
example, | show how this error can be calculated and incorporated into the variance of
estimates using the 2006-2010 American Community Survey. Based on my
recalculations, the standard errors with the classification error were often 10 to 50 times
as large as those without. Under a total error variance framework, both the Census
Bureau and data users should be aware of this source of uncertainty and, where
necessary, incorporate it into their estimates.

Introduction

A major advantage to using the American Community Survey (ACS) is the large sample
of cases available to produce statistics for population subgroups defined by geographic,
household, or individual characteristics. The ACS is the only sources of social and
economic data for geographies down to the census tract level, but also one of the few data
collection efforts capable of describing relatively rare populations such as specific race,
ethnic and ancestry groups, and detailed industries and occupations.

Having consistently defined measures across these groups makes classifying them
along those lines possible. Foreign-born ethnic groups could be classified by median year
of entry to define “recent” versus “past” entrants. Languages could be classified by the
degree of linguistic isolation, industries by the percentage of workers with employer-
provided health insurance, or counties by... just about any number of characteristics.
Defining the subgroups by another sample characteristic, however, introduces an
additional source of error that must be accounted for in estimates of variance.

" This paper is released to inform interested parties of ongoing research and to encourage
discussion of work in progress. Any views expressed on statistical, methodological, technical, or
operational issues are those of the author and not necessarily that of the U.S. Census Bureau.

" This update reflects comments from conversations with data users outside of the U.S. Census
Bureau.



General Case

Consider the following. A survey contains some characteristic (census tracts,
occupations, etc.) for which there are K categories. We wish to classify those categories
into a schema based on a secondary characteristic 8 (poverty rate, median earnings, etc.).
Since @ is obtained from sample data, it is subject to sampling error and so the estimate
for each category k is 6, with standard error o,. The K categories are classified by
making comparisons of each 8, against some critical value 7. If 8, is greater than t then
some classification indicator (y;) is set to 1, otherwise it is set to 0. Our final statistic is
then a measure of what percentage of the population belong to category K = k with a 6
greater than .

Often researchers will treat the classification of y as truth and assume there is no error
associated with the classification, or that the error is minimal and thus ignorable. This
paper will show that this assumption is naive and that the magnitude of the error is
significant. Ignoring it greatly overestimates the certainty of the final estimate. Using a
total error variance framework, the uncertainty associated with the classification is treated
as a form of measurement error and incorporated as such.

Calculating this type of measurement error is relatively easy in the ACS using the
successive differences replication (SDR) method for calculating variance (U.S. Census
Bureau, 20009). Consider for each category K = k, the statistic &, can be described as
the function m(z;, W;) where z; is a vector of survey characteristics, W; is the survey
weight for the survey respondent, and i denotes a member of group K = k. For a simple
example, z; is a single variable and ¢, is the weighted mean value of z, such that
m(z, W;) = X(W; - z;) /X W;. Using replicate weights W;, where r = 0...80,
(W; p=Production Weight), then replicate estimates 6, can be determined by
m(zi, Wi,r). Each replicate estimate can then be compared to the critical value t to create
replicate classification indicators yy ..

Under the naive assumption, y,o = ¥, is the only indicator used because the
estimate for that group is treated as truth. The variance of the final estimate (Y, = Y, =
Y) is the weighted mean value of y,, across all k categories such that:
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Taking the uncertainty of the classification into account, we allow the indicators to vary
along with the replicate weights. Using the separately calculated indicators (yy,), the
variance of the final estimate becomes:

Y. = Zi(yk,rWi,r)
T XiW,
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An error associated with classification can be described as the difference (d ;)
between each replicate indicator and the indicator from the production weight (8y , =
Yko0 — Ykr)- By definition, the deviation is zero for the production weight as the naive
and sophisticated estimates are the same in this scenario. However, the classification
error is the variance of this deviation, as calculated by the SDR method, because the
uncertainty comes from sampling error:
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It can also be shown that the weighted mean of this difference across groups is equal
to the difference between the replicate estimates from the naive and sophisticated
calculations.
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Decomposing the sophisticated variance calculation, we can see that the sophisticated
calculation is the sum of the naive calculation of variance for the estimate, error variance
associated with classification, and the sampling covariance between the two (as they are
derived from the same sample).
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=var(Y) + var(d) + 2cov(Y, D)

In the latter half of this paper, | will show that the error variance associated with
classification is quite large in comparison to the naive variance, making it non-ignorable,
using the Census Bureau brief Areas With Concentrated Poverty: 2006-2010 (Bishaw,
2011) as an example.

It is also important to note that the method described thus far requires variation of z
within group k. If z does not vary within the group, then the directly calculated standard
error of g,would be zero. The classification would be near certainty. This issue can occur
when a characteristic is rare and thus may have none or few sampled individuals in the
group. For instance, a 0 percent or 100 percent estimate has no directly calculated
variance.

In the case of a directly calculated zero variance, | utilize a procedure for determining
standard errors that uses the denominator of the estimate and state’s average weight. This
method is used by the Census Bureau to create standard errors and margins of error for
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zero percent estimates released on American Factfinder (U.S. Census Bureau, 2009).
From that standard error, | simulate R replicate estimates assuming a normal distribution
N (0,y02) where y = (1 — )2 and ¢ is the fay coefficient, commonly set at 0.5, and
taking the absolute value of the random draw. This factory corrects for difference
between the standard and SDR methods for calculations of variance.

Lastly, for comparison purposes, | use only the tract estimate and standard error to
simulate sampling distributions for all areas, using the method similar to that used for the
0 and 100 percent estimates. This approach ignores the replicate estimates that were used
to calculate the standard error and essentially regenerates synthetic replicate estimates
using random draws from a normal distribution. This method, however, ignores any
covariance between the indicators and derived estimates. However, this may prove to be
a useful method when ACS estimates are combined with data from other surveys. The
number of simulated estimates can be fit to the parameters of the survey to which the
indicators are being attached. For example, if attaching to the Current Population Survey
Annual Social and Economic Supplement, which uses 160 replicate weights to calculate
variance, 160 simulated estimates could be drawn.

Example using Poverty Areas

In Areas With Concentrated Poverty: 2006-2010, census tracts were categorized into four
categories: (I) tracts with poverty rates below the national estimate (about 13.8 percent),
(1) tracts with poverty rates at or above the national estimate but below 20.0 percent,
(1) tracts with poverty rates at or above 20.0 percent but below 40.0 percent, and (V)
tracts with poverty rates at or above 40.0 percent (Bishaw, 2011). Tracts in category Il
and category IV were considered “poverty areas”. From Table 1 in the brief showed that
61.4 (£ 0.1) percent of the U.S. population for whom poverty status was determined were
living in category | areas, 16.0 (x 0.1) percent in category Il areas, 19.1 (£ 0.1) percent in
category Il areas, and 3.5 (+ 0.1) percent in category IV areas. For the population in
poverty, 30.6 (x 0.1) percent lived in category | areas, 19.2 (£ 0.1) percent lived in
category Il areas, 37.8 (x 0.1) percent lived in category Il areas, and 12.4 (+ 0.1) percent
lived in category 1V areas. Each of the margins of error listed does not take into account
the error associated with categorizing a tract’s poverty rate.

Like Bishaw, | calculated poverty rates for 72,254 census tracts in the United States.
Puerto Rico was excluded from this analysis because it was not included in Bishaw. Also,
like Bishaw, my calculations showed 42,383 tracts were in category I, 11,574 tracts were
in category 11, 14,823 tracts were in category Ill, and 3,474 tracts were in category IV.
But this does not tell the entire picture.

Of the 72,254 census tracts, the median tract size was 3,883 people while tracts
ranged from 3 people to 29,369 people in the poverty universe. From the distribution of
tract sizes, 98 percent of tracts had populations between 805 (1st percentile) and 9,373
(99™ percentile). The size of the tract is important as the precision of estimates tends to
decrease with size. Also, of the 72,254 tracts, 517 had poverty rates of 0 percent and
another 18 had rates of 100 percent. These areas had standard errors ranging from 0.28
percent to 95.74 percent, as calculated using the ACS production method. Figure 1 shows
the poverty rates and their margins of error (90 percent confidence interval) for 100
randomly selected tracts. Many estimates have error bounds that stretch across the
poverty area category boundaries. While this figure only shows a select few tracts, it is
representative.



The coefficient of variation (CV) is a measure of precision for non-zero estimates.
Figure 2 shows the distribution of CVs for tracts with non-zero poverty rates. About half
of tracts have a CV that is less than 0.30. At this level, a tract with a poverty rate of 27
percent, for example, would have a standard error of 8.1 percent, and a 90 percent
confidence interval that stretches from 13.7 percent to 40.3 percent. This demonstrates
that a tract with a median CV could still have error bounds that stretch across all 4
poverty area categories.

Having calculated the tract poverty rates using each of the replicate weights, replicate
indicators were determined, and sophisticated variances calculated. Table 1 shows those
results. The sophisticated variance on the percentage of the population living in category
| areas was 0.0589 yielding a standard error of 0.2426. This standard error was almost 20
times as large as the one calculated using the naive method, shown in Figure 3." The
sophisticated variance on the percentage in category Il areas was 0.2231 vyielding a
standard error of 0.4724. This was 53 times as large as the naive standard error. The ratio
of the standard errors for categories 111 and IV were 14.1 and 53.4, again showing large
differences in the uncertainty attached to the percentages. Restating the earlier statistics
with the new variances, 61.4 (x 0.4) percent of the U.S. population for whom poverty
status was determined were living in category | areas, 16.0 (x 0.8) percent were in
category Il areas, 19.1 (+ 0.3) percent were in category Il areas, and 3.5 (£ 0.4) percent
were in category IV areas.

By state, the standard errors followed similar patterns, shown in table 2.
Sophisticated standard errors were roughly 10 to 50 times as large as the naive standard
errors. The smallest ratio was for the percentage of people in category IV areas in Utah at
7.1 times as large. The largest ratio was for the percentage of people in category Il areas
in Rhode Island at 55.0 times as large. The median sophisticated CV across all states and
the four categories was 0.101, compared with a median naive CV of 0.004.

So far, the standard errors were generated from indicators derived directly from
replicate estimates. To perform this method, however, requires the restricted access data
held by the Census Bureau. To overcome this problem, one could produce a set of
simulated replicate estimates based on the ACS estimate and the standard error, taken
from FactFinder. Table 3 shows the break down of measurement error variance and
covariance that sum with the naive variance to produce the total (sophisticated) variance.
Compared to the covariance estimates in table 2, the simulated indicators produce
covariances that are smaller in magnitude than the replicate weight-based covariances.
This makes sense because the replicate weight-based indicators preserve the fact that both
the indicator and the final estimate derive from the same sample. The simulated
indicators ignore this relationship and thus covariance should be closer to zero. Overall,
covariance makes up a very small percentage of the total variance (less than 3 percent) so
this component may be assumed away under necessary circumstances.

Table 4 shows the standard errors on the U.S. and state estimates using simulated
replicates and compares them to the replicate weight-based standard errors. The ratios
were between 0.72 and 1.30 across all categories and states and the average was 1.016.

! The margins of error shown in Bishaw (2011) are rounded to the nearest tenth of a percentage
point. For margins of error that would round to zero, a minimum value of 0.1 percent is used.
The standard errors used for comparisons in this paper are unrounded. Hence, margins of error
may appear to be less than 20 times as large.



This means a typical standard error using the simulation was only 1.6 percent higher than
its non-simulated standard error. Figure 4 shows the degree of correlation between the
two (r=0.990). The estimates tend to cluster around the 1:1 line, with few extreme
outliers. The ratio was higher (or lower) when the typical standard error was small, thus a
small difference could produce a large ratio.

Discussion

An advantage of the American Community Survey is that it may be used to determine the
characteristics of numerous population subgroups such as those defined by geographic
boundaries, occupations, or place of birth. Furthermore, it is possible to then classify
subgroups into groups defined by those characteristics. When these estimates are used in
subsequent tabulations or models, it is important to take into account the error with
making classifications. As the population subgroups get smaller and thus have smaller
sample sizes, it becomes more likely that the estimates on which the classification is
based will have larger variances. This uncertainty must be reflected in the margins of
errors that accompany final estimates based on the classification.

As the example of poverty areas shows, this source of error cannot be ignored.
Assigning census tracts to poverty categories resulted in estimates of uncertainty that
were 10 to 50 times as large as the margins of error when the classification error was
unaccounted. Ignoring this source of error can greatly overstate the level of confidence
in the final estimate

Ultimately, methods such as the one described in this paper should provide greater
utility with using ACS for research. It is easy to see why some data users are hesitant to
use small domain estimates given the sizes of the margins of error that accompany them.
By aggregating the small domain estimates together, and properly accounting for that
error, they can be confident in their uncertainty, while tackling the desired research
guestion.
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Figure 1. Poverty rates for 100 randomly selected tracts
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Figure 2. Distribution of tract coefficients of variation
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Table 1. Variance associated with the percentage in poverty categories — Replicate estimates

Category | Category Il Category Il Category IV

Naive variance (var(Y)) 0.000153 0.000079 0.000118 0.000025

Naive standard error 0.012355 0.008887 0.010850 0.005017
Sophisticated variance (var(Y)) 0.058874 0.223126 0.023230 0.071863

Sophisticated standard error 0.242639 0.472362 0.152413 0.268073
Measurement error variance (var(A)) 0.062034 0.225113 0.024111 0.071109
Covariance (cov(Y, A)) -0.001656 -0.001033 -0.000499 0.000364

Ratio of standard errors 19.64 53.15 14.05 53.43
Percentage of sophisticated variance

Naive variance 0.26 0.04 0.51 0.04

Measurement error variance 105.37 100.89 103.79 98.95

Covariance -2.81 -0.46 -2.15 0.51

Source: U.S. Census Bureau, American Community Survey, 2006-2010




Figure 3. Naive and Sophisticated Standard Errors
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Table 2. State Estimates and Standard Errors

State Estimate Naive S.E. Sophisticated S.E. SE Ratio
I Il I vV I Il 1] \% I Il 1] \% I I 1] v
Alabama 4530 | 22.67 | 27.32 4.71 0.09 0.08 0.09 0.04 1.83 2.40 1.31 0.76 20.4 29.4 15.3 17.4
Alaska 76.87 | 14.94 8.19 - 0.22 0.21 0.12 - 3.97 4.89 1.94 0.04 17.7 22.8 15.9 -
Arizona 57.43 | 14.49 | 2291 5.17 0.08 0.06 0.08 0.05 1.02 1.29 0.93 0.71 124 20.7 121 15.0
Arkansas 39.39 | 24.19 | 32.04 4.38 0.09 0.10 0.12 0.06 2.19 3.52 4.00 0.78 24.9 35.3 34.6 13.2
California 61.12 | 15.73 | 20.55 2.60 0.04 0.03 0.03 0.01 0.59 0.79 0.45 0.40 16.5 30.4 14.0 27.4
Colorado 65.28 | 14.51 | 18.52 1.69 0.08 0.07 0.08 0.03 1.87 2.23 1.02 0.74 22.1 31.4 13.1 23.8
Connecticut 78.88 9.57 8.84 2.71 0.07 0.07 0.07 0.05 1.06 1.60 1.44 0.37 15.5 23.4 21.7 7.9
Delaware 73.19 | 17.37 7.89 1.55 0.17 0.16 0.12 0.06 3.20 4.45 2.49 0.77 18.7 28.7 20.2 11.8
District of Columbia 47.79 | 17.48 | 26.54 8.19 0.24 0.22 0.27 0.17 2.95 4.79 3.83 2.05 12.3 215 14.4 11.9
Florida 61.22 | 1837 | 17.81 2.61 0.05 0.04 0.04 0.02 0.80 1.19 0.68 0.34 15.9 28.3 155 14.0
Georgia 52.31 | 18.18 | 25.97 3.55 0.06 0.06 0.06 0.03 0.96 1.31 1.06 0.36 16.4 21.8 17.9 14.0
Hawaii 79.20 9.99 9.84 0.97 0.18 0.14 0.12 0.04 2.26 2.76 1.72 0.58 12.2 19.5 14.2 13.6
Idaho 58.98 | 26.89 | 12.55 1.59 0.13 0.12 0.10 0.04 2.90 3.97 2.88 0.71 21.7 32.7 28.1 20.0
Illinois 67.41 | 13.69 | 15.50 3.40 0.05 0.03 0.04 0.03 0.74 1.17 0.70 0.54 15.9 34.4 16.0 19.8
Indiana 63.52 | 16.32 | 17.28 2.87 0.05 0.05 0.05 0.03 0.99 1.24 0.95 0.53 20.9 24.7 18.5 15.2
lowa 71.83 | 1498 | 11.86 1.33 0.07 0.06 0.06 0.03 1.62 1.72 1.57 0.54 22.6 30.1 26.2 19.7
Kansas 67.98 | 15.33 | 14.57 2.13 0.08 0.07 0.08 0.04 2.07 2.00 1.94 0.47 25.5 28.1 25.3 10.7
Kentucky 42.93 | 20.40 | 32.24 4.43 0.07 0.08 0.09 0.05 1.35 1.69 1.43 0.55 18.3 22.4 15.4 11.6
Louisiana 4544 | 19.02 | 28.92 6.62 0.09 0.08 0.09 0.06 1.48 2.02 1.35 0.64 15.7 25.3 15.5 11.2
Maine 65.02 | 20.13 | 13.87 0.98 0.10 0.08 0.10 0.03 2.67 3.03 1.79 0.50 26.7 36.4 18.5 14.3
Maryland 82.34 8.65 8.05 0.96 0.06 0.05 0.05 0.02 1.94 1.71 0.71 0.24 30.2 35.9 14.9 13.8
Massachusetts 75.15 9.18 | 13.56 2.12 0.06 0.04 0.05 0.03 0.88 1.00 1.22 0.50 15.8 24.0 24.4 17.4
Michigan 61.26 | 14.68 | 18.32 5.74 0.04 0.03 0.05 0.03 0.81 1.13 0.79 0.42 18.2 37.5 15.6 12.9
Minnesota 77.20 | 10.98 9.16 2.66 0.05 0.04 0.05 0.03 0.87 1.17 0.99 0.29 17.1 27.4 21.8 9.3
Mississippi 29.07 | 25.22 | 36.61 9.10 0.11 0.11 0.12 0.08 4.06 4.52 2.27 0.99 37.5 39.6 18.4 12.2
Missouri 58.55 | 19.82 | 18.72 2.90 0.07 0.06 0.06 0.03 1.18 2.09 1.49 0.39 16.9 34.3 24.6 13.1
Montana 5470 | 2459 | 19.64 1.07 0.15 0.16 0.11 0.06 3.80 4.79 2.56 1.30 25.1 30.7 22.7 21.2
Nebraska 70.06 | 15.95 | 12.41 1.57 0.09 0.09 0.09 0.04 1.72 2.22 1.94 0.72 18.3 25.6 22.7 18.6
Nevada 69.07 | 14.11 | 15.18 1.64 0.13 0.11 0.12 0.05 1.97 2.01 1.92 0.55 154 18.7 16.6 12.0
New Hampshire 86.40 8.62 4.48 0.50 0.10 0.08 0.07 0.03 2.50 2.32 1.49 0.34 24.0 29.6 20.4 10.7
New Jersey 79.96 7.91 | 10.39 1.74 0.04 0.04 0.04 0.02 1.18 1.47 0.81 0.38 26.3 411 22.2 15.9
New Mexico 39.76 | 22.29 | 33.62 4.33 0.13 0.13 0.15 0.07 2.61 3.98 2.11 1.32 20.4 30.0 14.1 18.3
New York 62.16 | 13.07 | 19.92 4.85 0.04 0.03 0.04 0.02 0.50 0.63 0.54 0.52 12.2 20.9 13.7 21.1
North Carolina 51.01 | 22.29 | 23.44 3.26 0.06 0.05 0.06 0.03 1.39 2.39 1.21 0.36 23.3 45.3 20.3 12.8
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State Estimate Naive S.E. Sophisticated S.E. SE Ratio
I Il I IV I Il 1] IV I Il 1] \% I Il 11 v
North Dakota 72.07 | 1393 | 12.01 2.00 0.14 0.14 0.12 0.05 3.24 3.37 1.73 0.78 23.3 24.9 14.5 15.2
Ohio 63.10 | 14.46 | 17.44 4.99 0.04 0.04 0.04 0.03 0.91 1.15 0.70 0.36 22.8 32.7 17.0 11.7
Oklahoma 46.18 | 23.75 | 27.34 2.73 0.09 0.08 0.09 0.05 2.70 2.53 1.62 0.54 28.7 30.0 17.1 11.6
Oregon 56.04 | 24.19 | 18.42 1.35 0.09 0.08 0.09 0.03 231 2.44 1.74 0.47 24.7 30.9 20.1 17.0
Pennsylvania 70.55 | 11.35 | 14.05 4.06 0.03 0.03 0.04 0.03 0.67 0.95 0.79 0.32 19.6 28.4 22.4 11.1
Rhode Island 72.50 5.79 | 19.27 2.44 0.13 0.10 0.12 0.06 3.95 5.27 2.51 0.87 30.1 55.0 21.7 14.6
South Carolina 4741 | 21.23 | 27.71 3.64 0.09 0.09 0.10 0.04 1.87 1.85 1.33 0.52 19.9 20.0 134 12.6
South Dakota 63.96 | 18.66 | 11.89 5.49 0.15 0.13 0.16 0.09 2.99 4.49 3.87 1.83 20.5 35.9 23.8 21.0
Tennessee 47.70 | 21.95| 26.05 4.30 0.06 0.06 0.07 0.05 1.49 2.32 1.21 0.54 23.2 36.0 16.3 11.7
Texas 50.18 | 17.22 | 26.59 6.01 0.04 0.04 0.04 0.03 0.70 0.81 0.76 0.47 16.1 22.1 17.4 17.6
Utah 76.49 | 11.09 | 10.13 2.30 0.08 0.07 0.07 0.04 2.09 1.96 1.17 0.28 24.6 26.7 16.4 7.1
Vermont 74.58 | 15.85 8.50 1.07 0.11 0.11 0.11 0.06 2.73 3.15 1.75 0.50 23.9 27.8 16.4 8.7
Virginia 7435 | 13.69 | 10.28 1.68 0.05 0.04 0.04 0.02 0.98 1.62 0.99 0.22 18.7 38.5 25.9 9.6
Washington 67.58 | 15.96 | 14.85 1.61 0.05 0.06 0.06 0.02 1.06 1.33 0.79 0.59 19.3 23.9 12.8 27.7
West Virginia 36.96 | 32.00 | 28.62 2.42 0.13 0.11 0.12 0.05 2.95 4.00 2.34 0.60 23.6 35.0 19.4 12.6
Wisconsin 73.66 | 13.33 9.70 331 0.06 0.04 0.06 0.03 1.04 1.31 0.82 0.34 18.3 30.4 14.6 9.8
Wyoming 79.16 | 13.47 7.24 0.13 0.22 0.19 0.11 0.02 3.35 3.70 2.70 0.73 15.1 19.1 24.8 30.2

Source: U.S. Census Bureau, American Community Survey, 2006-2010

Table 3. Variance associated with the percentage in poverty categories — Simulated Replicate estimates

Category | Category Il Category lll Category IV

Sophisticated variance (var(Y)) 0.021983 0.183061 0.029690 0.092355

Sophisticated standard error 0.148266 0.427856 0.172308 0.303900
Measurement error variance (var(A)) 0.021481 0.184285 0.029275 0.091577
Covariance (cov(Y, A)) 0.000175 -0.000652 0.000149 0.000377

Ratio of standard errors 12.00 48.15 15.88 60.57
Percentage of sophisticated variance

Naive variance 0.69 0.04 0.40 0.03

Measurement error variance 97.72 100.67 98.60 99.16

Covariance 0.79 -0.36 0.50 0.41

Source: U.S. Census Bureau, American Community Survey, 2006-2010
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Table 4. Ratio of Simulated Standard Errors to Replicate Weight-based Standard Errors

Simulated Replicate Weight-based
Standard Errors Standard Errors Ratio
State I Il I vV | Il 1] v | Il 1] \Y

United States 0.15 0.43 0.17 0.30 0.24 0.47 0.15 0.27 0.61 0.91 1.13 1.13
Alabama 1.77 2.34 1.32 0.85 1.83 2.40 1.31 0.76 0.97 0.98 1.01 1.13
Alaska 4.02 4.88 1.74 0.04 3.97 4.89 1.94 0.04 1.01 1.00 0.90 1.11
Arizona 1.04 1.43 1.07 0.80 1.02 1.29 0.93 0.71 1.01 1.11 1.16 1.13
Arkansas 2.18 3.27 3.92 0.82 2.19 3.52 4.00 0.78 0.99 0.93 0.98 1.06
California 0.49 0.79 0.47 0.40 0.59 0.79 0.45 0.40 0.83 1.01 1.03 1.01
Colorado 1.77 2.43 1.05 0.79 1.87 2.23 1.02 0.74 0.95 1.09 1.03 1.07
Connecticut 0.94 1.41 1.43 0.41 1.06 1.60 1.44 0.37 0.89 0.88 0.99 1.12
Delaware 2.87 4.57 2.59 0.81 3.20 4.45 2.49 0.77 0.90 1.02 1.04 1.06
District of Columbia 3.36 4.44 4.20 2.17 2.95 4.79 3.83 2.05 1.14 0.93 1.10 1.06
Florida 0.70 1.15 0.74 0.33 0.80 1.19 0.68 0.34 0.88 0.97 1.09 0.98
Georgia 0.96 1.15 1.06 0.37 0.96 1.31 1.06 0.36 1.00 0.88 1.00 1.02
Hawaii 2.22 2.69 1.67 0.64 2.26 2.76 1.72 0.58 0.98 0.97 0.97 1.11
Idaho 2.61 3.91 2.84 0.67 2.90 3.97 2.88 0.71 0.90 0.99 0.99 0.95
Illinois 0.87 0.94 0.72 0.62 0.74 1.17 0.70 0.54 1.17 0.81 1.04 1.14
Indiana 1.06 1.39 1.10 0.57 0.99 1.24 0.95 0.53 1.07 1.12 1.15 1.08
lowa 1.43 1.64 1.39 0.60 1.62 1.72 1.57 0.54 0.88 0.95 0.89 1.10
Kansas 2.27 2.01 2.01 0.53 2.07 2.00 1.94 0.47 1.10 1.00 1.03 1.11
Kentucky 1.55 1.73 1.41 0.54 1.35 1.69 1.43 0.55 1.15 1.02 0.99 0.97
Louisiana 1.47 1.79 1.49 0.67 1.48 2.02 1.35 0.64 0.99 0.89 1.10 1.06
Maine 3.06 3.35 1.77 0.56 2.67 3.03 1.79 0.50 1.15 1.11 0.99 1.11
Maryland 2.24 1.95 0.79 0.25 1.94 1.71 0.71 0.24 1.15 1.14 1.11 1.05
Massachusetts 0.77 0.95 1.15 0.47 0.88 1.00 1.22 0.50 0.87 0.95 0.94 0.94
Michigan 0.87 1.05 0.75 0.41 0.81 1.13 0.79 0.42 1.07 0.93 0.95 0.97
Minnesota 1.12 1.12 1.07 0.35 0.87 1.17 0.99 0.29 1.29 0.96 1.08 1.22
Mississippi 3.91 4.68 2.17 1.00 4.06 4.52 2.26 0.99 0.96 1.04 0.96 1.01
Missouri 0.98 1.80 1.60 0.37 1.18 2.09 1.49 0.39 0.83 0.86 1.07 0.94
Montana 4.12 5.45 2.50 1.37 3.80 4.79 2.56 1.30 1.09 1.14 0.98 1.05
Nebraska 2.00 2.47 1.99 0.66 1.72 2.22 1.94 0.72 1.16 1.11 1.03 0.92
Nevada 1.96 2.02 2.06 0.54 1.97 2.02 1.92 0.55 0.99 1.00 1.07 0.98
New Hampshire 2.49 2.39 1.84 0.34 2.50 2.32 1.49 0.34 1.00 1.03 1.23 0.98
New Jersey 1.28 1.49 0.77 0.32 1.18 1.47 0.81 0.38 1.09 1.01 0.95 0.85
New Mexico 2.42 3.56 1.77 1.13 2.61 3.98 2.11 1.32 0.93 0.89 0.84 0.85
New York 0.65 0.75 0.55 0.53 0.50 0.63 0.54 0.52 1.30 1.19 1.02 1.01
North Carolina 1.00 2.13 1.31 0.44 1.39 2.39 1.21 0.36 0.72 0.89 1.09 1.21
North Dakota 2.98 3.67 2.08 0.74 3.24 3.37 1.73 0.78 0.92 1.09 1.20 0.95
Ohio 1.03 1.10 0.72 0.35 0.91 1.15 0.70 0.36 1.13 0.95 1.03 0.99
Oklahoma 2.46 2.18 1.62 0.57 2.70 2.53 1.62 0.54 0.91 0.86 1.00 1.06
Oregon 2.05 2.32 1.78 0.55 2.31 2.44 1.74 0.47 0.89 0.95 1.03 1.17
Pennsylvania 0.64 0.84 0.66 0.33 0.67 0.95 0.79 0.32 0.95 0.89 0.84 1.02
Rhode Island 4.18 5.82 2.78 0.74 3.95 5.27 2.51 0.87 1.06 1.10 1.11 0.85
South Carolina 1.74 1.85 1.55 0.52 1.87 1.85 1.33 0.52 0.93 1.00 1.17 0.99
South Dakota 3.24 4.54 3.71 1.74 2.99 4.49 3.87 1.83 1.08 1.01 0.96 0.95
Tennessee 1.30 2.25 1.18 0.59 1.49 2.32 1.21 0.54 0.87 0.97 0.97 1.10
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Simulated Replicate Based
Standard Errors Standard Errors Ratio
State I Il I vV | Il 1] v | Il 1] \Y
Texas 0.70 0.89 0.69 0.48 0.70 0.81 0.76 0.47 1.01 1.10 0.91 1.03
Utah 2.10 2.18 1.15 0.31 2.09 1.96 1.17 0.28 1.01 1.11 0.98 1.11
Vermont 2.50 3.27 1.89 0.53 2.73 3.15 1.75 0.50 0.92 1.04 1.08 1.06
Virginia 0.96 1.51 0.96 0.23 0.98 1.62 0.99 0.22 0.98 0.93 0.98 1.06
Washington 1.03 1.42 0.84 0.60 1.06 1.33 0.79 0.59 0.97 1.07 1.05 1.02
West Virginia 2.68 4.07 2.57 0.64 2.95 4.00 2.34 0.60 0.91 1.02 1.10 1.07
Wisconsin 1.01 1.28 0.99 0.44 1.04 1.31 0.82 0.34 0.97 0.98 1.20 1.30
Wyoming 3.36 4.09 2.78 0.68 3.35 3.70 2.70 0.73 1.00 1.11 1.03 0.93

Source: U.S. Census Bureau, American Community Survey, 2006-2010

Figure 4.
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Appendix A — SAS code for tabulation with sophisticated variances
libname acs "/PATH/";
/*geoid can be replaced with the level of geography or group to be classified*/

data extract;
set acs.psam_pus (where=(povpip In(0:501)) keep=pwgtp: povpip geoid);

if povpip<l00 then pov=1;
else pov=0;

run;
proc means noprint completetypes data=extract;
class geoid pov;
types geoid geoid*pov;
var pwgtp pwgtpl-pwgtp80;
output out=geo_sums sum=cntO0-cnt80;
run;
proc sort data=geo_sums; by geoid; run;
data geo_categories (keep=geoid pcat:);
set geo_sums;
by geoid;

array cnt [0:80] cntO-cnt80;
array tot [0:80];

array pct [0:80];

array pcat [0:80] pcatO-pcat80;

retain tot pcat;
if first_geoid and pov=. then do i=0 to 80;
tot[i]=cnt[i];
pctli]=.;
pcat[i]=.;
end;
if pov=1 then do i=0 to 80;
if cnt[i]=. then cnt[i]=0;
pct[i]=100*cnt[i]/tot[i];

if pct[i]<13.8 then pcat[i]=1;
else i1If 13.8<=pct[i]<20.0 then pcat[i]=2;
else if 20.0<=pct[i]<40.0 then pcat[i]=3;
else if pct[i]>=40.0 then pcat[i]=4;
end;
it last._geoid;
run;
proc sort data=extract; by geoid; run;
proc sort data=geo_categories; by geoid; run;
data pov_area_ dataset;
merge extract (in=a) geo_categories;
by geoid; if a;
run;
proc computab data=pov_area dataset notranspose out=OutputTable;
cols coll-col9;
rows rowl-row84;
rows row2-row81 /noprint;



array wgts [0:80] pwgtp pwgtpl-pwgtp80;
array pcat [0:80] pcatO-pcat80;

do i=0 to 80;
table[(i+1),(pcat[i]+1)]=table[(i+1), (pcat[i]+1)]+wgts[i];
end;

colsum: if _row_ in(1:81) then do;

coll=sum(of col2-col5);

if coll>0 then do;
col6=100*col2/coll;
col7=100*col3/col1l;
col8=100*col4/coll;
col9=100*col5/coll;

end;

end;

/*VARIANCE*/

rowsum: row82=(uss(of row2-row81)/20)-(rowl*sum(of row2-row81)/10)+(4*rowl**2);
row83=sqrt(row82); /*SE*/
row84=row83*1.645; /*MOE*/

run;
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